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Inz (¢ €)| > Y, min {r,, lnz,|} >0, tel
Setting W, (s) = max {p, (s), ps (s)} ,from (8. 12),(8. 13) and (8. 16) we have

lnz (8 )| > py (£ — Bn)y 1€ n=1,2,... (8.18)

Let us show that Py () > 0 on [0, 6]. In fact (see (8.17)), P (8) => T4 / 2 > 0,
Ty << S <C 0. By virtue of the definition of t, (see (8.4)) we have

Pe ) >r9g —Dec (1) —euc (1 -+ K% >ry/2 —e, (K0 —1)/ K

on the interval [0, t,]. Hence, according to the definition of e, we have p, (s) >
ro/ 4 >0, s& [0, 7,]. The positiveness of 4 (s) is proved.
Since W, () is continuous, we have that I/, = min p, (s) > 0, so that formulas

(8.16) and (8, 18) guarantee /-escape in problem (1. 1), for & = [0, 8*] and z (fy;
e) = Zy.
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We explain the character of simplifications which can be carried out in the Ha-
miltonian function of a nonresonant system using the formal, noncanonical trans-
formations. We show the symmetries of such systems, which are not generated
by their first integrals, Using a Hamiltonian system with two degrees of freedom
we show that the noncanonical transformations retaining its normal form but with
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displaced coefficients, exist also when resonances are present. Formulas defin-
ing these transformations are given,

1, Statement of the problem and the result, The coefficients of a
Hamiltonian in its normal form are canonical invariants [1] (i.e. remain unchanged
under any canonical transformations which preserve the normal form)., Although the
group of canonical transformations is infinite dimensional, it is in certain sense narrow,
since it is strictly required to transform any Hamiltonian system into another Hamilton-
ian system, At the same time, the maximal group of transformations preserving only a
certain subclass of Hamiltonian systems will be, generally speaking, no longer a canoni-
cal one, On the other hand, its action on the chosen subclass will become more effective
since the group is more general than the canonical group. The appearance of the sym-
metries in the Hamiltonian systems not generated by the first integrals can be explained
by the analogous widening of the groups on the subclasses, We can use the normal form
as the Hamiltonian subclass under investigation. In this case we can explain the charac-
ter of simplifications for the nonresonant systems which can be carried out on the Hamil-~
tonians, using formal, noncanonical transformations. In other words, the following theorem
holds,

Theorem, Let the conditions

det (Byy) =0, By +0, i, j<n (1.1
hold for the Hamiltonian
H=D> [ :
= Qo+ X Bum; + Hy+ Ho+ ..., u =224 pi
i 1,7
of a stationary real nonresonant system. Then using a formal noncanonical change of
variables, we can transform the function H to the form

n
H =2 i+ 2 Bwass + D) fr () (1.2)
i 1,7 k=1
in which none of the formal series fy (4yr)=ansUs® + @'+ ... can any longer
be altered.
The operators corresponding to the one-parameter symmetry groups have the form

n

2 i)
2 Dy (ug, -+ 0 )(pk_—xk’_)
P! T O, op,

where Px are arbitrary functions, and the above transformation will be canonical if
(0] R = acp / Buk .

Let us now consider a Hamiltonian system with two degrees of freedom in the presence
of a resonance of order ¢ = m; + m,. By the Moser theorem [1] the Hamiltonian of
the system can be reduced to the normal form which is given in the canonical polar
coordinates z,, p, by bt

k ik _ ik
H = 2 (07pp)* /o (01,00) (aye™ + aye9)
k=0
where f(p) are formal power series in integral powers of 0 ; 0 = m,@; + MmyP, is
the sesonance phase, and i) (p) = mapy — mupy + 0 (%), w=mzy x:=—m

(z.=Vp cosq, p, = ¥ o, sin ¢,)
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Using the new canonical variables

1
U=~ (Mep1 — mup,),  u, = % (p1 + p2)
0 =me +myp,, o= P1— P,

we can write the equations of motion in the form

. ) . ol . oH
ul—O, a—_aTu’ uz—%, 9———5;;
Let us denote by H* the result of replacing the coefficients ain the H by their infi-

nitesimal displacements (. Then H* is given by the formula

. _ . oH GOH o 8H 3
=/, H)— (00u) 35 + @ 5, ¥ 55 ) (1.3)
where the functions f, ¢,” and v° satisfy the following unique equation;

OH 3g:°  9H 09° | oH 0% OH 0y ol o (L4
Guious T e T Bm a0 a0 g = OF(w, W) 5 — gL (L9

and @, (u,) and @* (u,, H) are arbitrary functions of their arguments,

Certain complications arise when the formulas (1.3) and (1.4) are used to simplify
the Hamiltonian, We shall just say that H*, as can be seen from the formulas, can
vary over wide limits, and this makes possible the removal of a large number of terms
from the expansion of the Hamiltonian H .

Detailed derivation of the formulas (1.3) and (1.4) is not given here.

2. Proof of the theorem, It is expedient to pass,in the real Hamiltonian
system, to the complex variables 2p = Zx + ipg, Zp = Zp —ip,.If H ->— 2iH,
then the change is canonical and the system can now be written in the form

= 0H / 0z;, %, = — OH / 0z,
Using the Birkhoff transformation we reduce the system to the normal form [2], so that
H = H (uy,. . ., Uy), Uy = 237y and
) = oH _
Ze T Hp %k Bk = g %k

The displacement operator along the trajectories assumes the form
n
oH 2 0
L = — (z — Zp—= )
El auk k gz az k oz
Let
n

2 = 2(51(“)%32%(”)2; 2)+ St o=

j=1
=Y + (@)
i 1

be an operator (of an infinitesimal transformation) corresponding to the one-parameter
group G of transformations of the space {z, Z, a} into itself (a; are the coefficients
of expansion in powers of u,of the Hamiltonian H). The necessary condition for the
transformations belonging to G to transform a Hamiltonian system into another Hamilton-

ian system (and consequently every motion of the initial system into a motion of the
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transformed system) is, that the operators [ and Z commute,i,e, [L, Z] = (. From
this we have n

= SN0 20 2.1
[L, Y] = gl-éq(Zl 0Zi A-azi> ( )
where o
Tk __
H* = ;}Cl (a) (T (2.2)

Since H depends on the parameters a; linearly, the function H* represents the result
of replacing the coefficients a; in the Hamiltonian H by their infinitesimal displace-
ments {; (a).

Let us find the commutator [L, Y], Omitting the detailed computations, we find

n n
_ e L E\ H o _a
LY== 3 (B u®+5) ) (ag— )
Comparison with (2, 1) yields
n
. -
%—I,f;=—]_zl ufwj(u)a—f‘%’u—j, Vi) =8 +8& *k<n) (2.3)

The tranformations of the phase variables 2, Z» under which all coefficients a; of
H remain unchanged, yield the symmetry group of the initial system, For this reason
the symmetry group is generated by those functions &; for which H* = 0. From (2.3)
we see that if det (02H/du, du;)5=0 (i.e. the conditions (1. 1) are satisfied) then
$; W)=0, j<<nand §=i®; (uy, ..., uy) where @; are arbitrary functions.
If conditions (1. 1) are not satisfied, then the symmetry group will contain m = p —
rank (0%H / du,0u;) additional independent generatrices.

Let us now consider the transformations which displace the coefficients of the Hamil-
tonian H.

If P; (u) can be chosen so that H* contains a term with the coefficient equal to
unity, then a term of the same designation can be annihilated in H by means of a for-
mal transformation. This transformation leaves unaffected all the coefficients in H
accompanying the terms on which H* does not depend. The remaining coefficients
of the expansion of H will be transformed in some manner. If H* could be chosen
arbitrarily, then all terms in H could be annihilated, This however cannot be done,
irrespective of the fact that by virtue of the condition (1. 1) all functions up,, - . -,
u,¥, can be found from the equations (2. 3) in the form of formal power series for any
H* given in the form of a series (or a polynomial), The fact is, that the series com-
puted for upp; must be divisible by u;. This condition can always be fulfilled by set-
ting H* = u,™ ... upnfor my>2,..., m, > 2. Itisevident that in this
case the power series for \P; (u) exists, consequently all terms of the type shown above
can be annihilated in H .

It can easily be shown that a series for H* in which the functions 1; (u) are obtained
by the power series in positive powers of u can be given, for the case of » == 2 (the
general case can be dealt with in a similar manner), in the form

oa* OH*
du, + Lt B ey +u =

=0 2 Bua |us=0

oH*

oH*
Ouy

Ous

H*=S

du,+ S

Us=—0 U1=0
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du Sw FH du, — *H PH
Up=0 1 2 Juzd |ug—o 2 12 Bu16us w—y Us Ou10uz |u,—o

(0, = uppy (ug, 0), ©, = ugy, (0, U,))

It is clear from the above expression that by virtue of the condition f,, =~ 0 ,the terms
appearing in the binomials a,u,™ + bu,™ ! u,and cu,u,™ ! + du,™ are transformed
simultaneously for each order. For this reason only one term can be annihilated in
each binomial, In particular, setting consecutively @, = U™ and Wy = U™, we
arrive at the expression (1. 2).

aeH
—\® duy?

3, A scheme for proving the formulas (1,3) and (1.4). Letus
denote by L the displacement operator along the trajectories written in the variables
Uy, Uy, O and a,and by X the operator of transformation of the following Hamilton-
ian system:
oH o oH 9 oH o

50 dus  uzd0 T dudn
7} J 2 a ! i}
* k. —_ - 1+ E = : —
X* =t by + byt §61+%;,(a) %;

]

X+ 36@ 5

Transforming the equations obtained from the condition of invariance of [L, X*] = 0,

we obtain &, = &, (u,, H),H* = — XH + f (u;, H) and
9y OFl | BE. | 09 |, OF
WE+TM+5§+5_¢)("‘1’ H) (3.1)

where &, / and @ are arbitrary functions of #,and H,and H* is determined exact-
ly as in (2, 2). Further manipulations yield
. - df oH ol
S2 = P —r[a(a—ﬂ—@)—Fg]a—e o .9
3
. af Ot [ aH .
v=v—[a (53— ) +85 /5
Here ¢,° and v are arbitrary functions independent of c. From (3. 2) follows (1.3).
Substituting the expressions (3. 2) into the equation of motion containing dH* / du,
yields the formula (1.4) in which @* = @ — §f / H. The functions ¢° and }° are
given by (1.4), while &, and ¥ by (3.2). After this the function t* = [E + a (9f /
OH —®)10H /du, can be found from (3. 1) in the form of a formal series in c. Fin-
ally, we obtain _
e L

. 3
— L .9
§=¢&% 5~ 4 a(d)

AH . OH
77)

& = (P2f'+§*'a§ , P=9"—F Foe
4. Note. The questions of convergence were not considered here. The general
problem of convergence was studied in [3}, The analyticity of the normalizing trans-
formation for the second order systems which are Hamiltonian in the linear approxima-
tion, was proved by the author (*). (A complete proof of this obtained by the author

* Markhashov, L. M, , On the analytic equivalence of the systems of ordinary differential
equations with resonances, Preprint N236 of the Inst, of the Problems of Mechanics, Akad.
Nauk SSSR, Moscow, 1974,
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does not, in fact, contain any of the omissions noted in the text of [4]). The presence
of a finite number of formal invariants of the second order non-Hamiltonian systems
with resonances was established earlier [5]. The same aspect was studied for the multi-
dimensional systems by the author in [6] and (simultaneously and independently) in [7].

REFERENCES

1. Moser,J,, Lectures on Hamiltonian Systems, Providence,New Jersey, Mern,
American Math, Society, N2 81, 1968,

2. Birkhoff, G, D., Dynamical Systems. Providence, New Jersey, American Math,
Society, 1966.

3. Briuno, A, D., Analytic form of differential equations, Tr. Mosk. matem, o-va,
Vol 25, 1971, Vol. 26, 1972,

4, Briuno, A, D., Normal form of the real differential equations. Matem, zametki,
Vol, 18, N2 2, 1975,

5. Markhashov, L, M, , Analytic equivalence of second order systems for an arbit-
rary resonance. PMM Vol, 36, N2 6, 1972.

6. Markhashov,L. M, , Invariants of the multidimensional systems with a single
resonant relation. Izv. Akad. Nauk SSSR, MTT, N¢ 5, 1973.

7. Briuno, A, D, , On the local invariants of differential equations, Matem. zametki,

o. £ Ng ’ .
Vol. 14, N=4, 1973 Translated by L. K,

UDC 531,36+ 517, 949, 22
EVENTUAL STABILITY OF DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE

PMM Vol.40, N2 1, 1976, pp.44-54
S.N, SOROKIN
{Moscow)
(Received July 25, 1974)

For differential systems of neutral type we examine one of the formulations of
the finite-time interval stability problem, i.e., technical stability. By the
Liapunov-Krasovskii method [1— 3] we obtain sufficient conditions for techni-
cal stability and for the so-called contracting technical stability. Similar in-
vestigations for ordinary differential equations were carried out in [4] and for
equations with a lagging argument, in [5, 6].

1, We are given a system of differential equations

,% Dz, (0),t) =f (@ (©®)t), D@ O, t)=z(@)—g@®),?) (LD

g@®, 0=\ [dn (6,12 (@)
Here the vector function z;(0) = x (¢ + 6) belongs forall ¢ > O to the spaceC,=
C ([—v, 0], R™) with the norm |z (8) | = sup ( | z; (8) | for —7v <0 <O,

i=1,2,...,n); n(0, t)isan(n X n)-matrix of functions continuous in ¢ &
[0, oo0) and of bounded variation in 0, for which a continuous function I, (s), nonde-



