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I m  (t; e) l > 1/~ r a in  { r , ,  laz,  ] } ~ O, t ~10 

Setting ~x, (s) - -  m a x  {p ,  (s), p ,  (s)} , from (8 .12) . (8 .13)  and(S.  16)we have 

I n z ( t ;  e) l ~  b t , ( t - - ~ , ) ,  t ~ I n ,  n- - - - i ,2  . . . .  (8.18) 

Le tus  show that ~ ,  ( s ) )  0 on [0, 0]. In fact (see ( 8 . 1 7 ) ) , p ,  (s) > r ,  / 2 ~ 0, 
T,  ~ s ~ 0. By virtue of the definition of x ,  (see (8 .4 ) )  we have 

p .  (s) > ro - -  Dc (x . )  - -  e . c  ( t  + e g°) > r0 / 2 - -  e .  (e  2K0 - -  1 )  / K 

on the interval [0, T . ] .  Hence, according to the definition of e ,  we have p .  (s) 
r 0 / 4 ~ -  O, s E [0, T,] .  The positiveness of ~t, (s) is proved. 

Since ~t, (s) is continuous, we have that l ,  = r a in  ~t, (s) ~ O, so that formulas 
s~[0.0] 

(8.16) and (8.18)  guarantee / . -escape in problem (1. 1) for e E [0, e , ]  and z ( t , ;  
8) : Z,. 
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We explain the character  of simplifications which can be carried out in the Ha- 
mil tonian function of a nonresonant system using the formal,  aoncanouical  trans- 
formations. We show the symmetries  of such systems, which are not generated 
by their first integrals. Using a Hamil tonian system with two degrees of freedom 
we show that the noncanonical  transformations retaining its normal form but with 
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displaced coeff icients ,  exist  also when resonances are present. Formulas defin- 
ing these transformations are given. 

1. S t a t e m e n t  o f  t h e  p r o b l e m  s a d  t h e  remult .  The coefficients  of a 
Hamil tonian in its normal  form are canonica l  invariants [1] ( i .  e. remain  unchanged 

under any canonica l  transformations which preserve the normal  form). Although the 
group of canonica l  transformations is infini te  dimensional ,  i t  is in cer ta in  sense narrow, 
since i t  is str ictly required to transform any Hamil tonian  system into another Hamil ton-  

ian system. At the same t ime ,  the max imal  group of transformations preserving only a 
cer tain subclass of Hamil tonian  systems will  be ,  genera l ly  speaking, no longer a canoni-  
ca l  one. On the other hand, its act ion on the chosen subclass will become more effect ive  
since the group is more general  than the canonica l  group. The appearance of the sym,  
metr ics  in the Hamil tonian  systems not generated by the first integrals can be explained 
by the analogous widening of the groups on the subclasses. We can use the normal form 
as the Hamil tonian subclass under invest igat ion.  In this case we can expla in  the charac-  
ter of s impli f icat ions  for the nortresouant systems which can be carried out on the Hami l -  

ionians, using formal,  noncanonical  transformations. In other words, the following theorem 
holds. 

T h e o r e m .  Let the conditions 

d o t  (~ t l )=¢=0 ,  ~ l j ~ 0 ,  i ,  ] ~  n (1 .1)  

hold for the Hamil tonian  
2 

H =  ~ oqut q- ~ ,  ~i~u~uj -{- H s  + H s  + . . ., u~ = x~ + l~ 
i i , j  

of a stat ionary real  nonresonant system. Then using a formal noncanonical  change of 
variables,  we can transform the function H to the form 

T~ 

i i ,  i h ' = l  

in which none of the formal  series [h  ( u ~ ) = - a k s u h  3 q- ak4uh4q - • • • can any longer 

be al tered.  
The operators corresponding to the one -pa ramete r  symmetry groups have the form 

n ( 0 0) 

where Qbh are arbitrary functions, and the above transformation will be canonica l  i f  

• ~ = O ~ / S u k .  
Let us now consider a Hamil tonian  system with two degrees of freedom in the presence 

of a resonance of order q = rn I -Jr- rn~. By the M o o r  theorem [1] the Hamil tonian of 
the system can be reduced to the normal  form which is given in the canonica l  polar 
coordinates x~, p~ by o~ 

H = ~ (p~,p~.,)h:/~/(~) (pÂ, O~) (a~eik 0 q_ d~e_i~0) 

where ) t  (p) are formal  power series in in tegra l  powers of p ; 0 = mltPt q-  rn~tp~ is 

the resonance phase, and /(0) (P) = m~pl - -  rnlps q-  O (p~), al  - -  m2, ~ = - m, 

(x~ = V-P-:~ cos  ¢p~, p~ = V ~  s in  ¢p~) 
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Using the new canonical variables 

t t 
Ul  ~ ~ (?n2Pl  - -  Dgl~)2)' U2 : -q--  ( e l  -~- P2) 

0 = m1(~1 -~- /r/2(~2 ' ~ = ~ I  - -  (])2 

we can write the equations of motion in the form 

OH . OH OH 
U 1" : O ,  0 ( '  - -  Ot~l , U 2 = " ~  , O" - -  OU2 

Let us denote by H *  the result of replacing the coefficients ak in  the H by their infi- 
nitesimal displacements gk. Then H *  is given by the formula 

H *  = / (ut, H )  - -  ( q)l (Ul) ~0H .~_ (P~° OH~ .~_ , o  "O'o]OH (1.3) 

where the functions 1, ~02 ° and ~o satisfy the following unique equation: 

OH Otp~ ° OH 0~, ° OH 04 ° t)H 0~ o = qb* (u~ H )  OH O/ (1.4) 
Ou--]l 0u2 - -  0u----22 0u~ + Out O0 O0 0,,~ ' 0:,~ Out 

and ¢Pl (ul) and ~ *  (ul, H)  are arbitrary functions of their arguments. 
Certain complications arise when the formulas (1. 3) and (1.4) are used to simplify 

the Hamiltonian. We shall just say that H * ,  as can be seen from the formulas, can 
vary over wide limits, and this makes possible the removal of a large number of terms 
from the expansion of the Hamiltonian H .  

Detailed derivation of the formulas (1. 3) and (1.4) is not given here. 

2.  P r o o f  o f  t h e  t h $ o r e m .  It  is expedient to pass, in the real Hamiltonian 
system, to the complex variables zh : xk + i p k ,  z k  = xh  ~ i p h .  If  H - - ~ - - 2 i H ,  
then the change is canonical and the system can now be written in the form 

zh" : OH / O~,  ~-h" : - -  OH / Ozh 

Using the Birkhoff transformation we reduce the system to the normal form [2], so that 
H :  H ( u  D . . . ,  u n ) , u ~  : z # a  and 

• OH OH 

The displacement operator along the trajectories ~s_~:mes the form 
7~ ( 0 )  L ,~, o:z o = - -  _ _  Z k -  = -  

Let 
n 

o 

i 

be an operator (of an infinitesimal transformation) corresponding to the one-parameter 
group G of transformations of the space {z, ~, a} into itself (at are the coefficients 
of expansion in powers of u ,  of the Hamiltonian H) .  The necessary condition for the 
transformations belonging to G to transform a Harniltonian system into another Hamilton- 
Jan system (and consequently every motion of the initial system into a motion of the 
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transformed system) is, that the operators L and Z commute,  i. e. 
this we have n 

o . ) 
k - - 1  

where 

Since 

[L, Z] = O. From 

(2.1) 

OIL 

i 

H depends on the parameters a i linearly, the function H *  represents the result 
of replacing the coefficients ai  in the Hamiltonian H by their infinitesimal displace- 
ments ;~ (a). 

Let us find the commutator  [L,  Y] .  Omitting the detailed computations, we find 
n 

[ L , r ]  : - y ,  ( y + 02,+ , 0 0 
Oz k 

Comparison with (2 .1)  yields 
n 

02H OH___* _ ~', uj~j (u) O%% , j  (u) = ~j + ~j (k < .)  (2.3) Oul~ 
Y=l 

The tranformations of the phase variables zh, ~h under which all coefficients ai of 
H remain unchanged, yield the symmetry group of  the initial s y s t e m .  For this reason 
the symmetry group is generated by those functions ~t for which H *  = 0. From (2.3) 
we see that if  de t  (02H/Ou~ au~)Je=O (i.e. the conditions (1. 1) are satisfied) then 
~ j  ( u ) = 0 ,  ] ~ n and ~j = i ~  i ( u  1 . . . .  , un )  where ~)1 are arbitrary functions. 
If  conditions ( L  1) are not satisfied, then the symmetry group will contain m = n - -  
r a n k  (0SH / 0u  h0u~) additional independent generatrices. 

Let us now consider the transformations which displace the coefficients of the Hamil-  
tcmian H. 

If ~y (u) can he chosen so that H *  contains a term with the coefficient equal to 
unity, then a term of the same designation can be annihilated in H by means of a for- 
mal transformation. This transformation leaves unaffected all the coefficients in H 
accompanying the terms on which H *  does not depend. The remaining coefficients 
of  the expansion of H will be transformed in some manner. If  H *  could be chosen 
arbitrarily,then all terms in H could be armihilated. This however cannot be done, 
irrespective of the fact  that by virtue of the condition (1.1)  all functions ux,1, . . . ,  
u~$~ can he found from the equations (2.3)  in the form of formal power series for any 
H *  given in the form of a series (or a polynomial). The fact is, that the series com-  
puted for uj4~j must be divisible by uj.  This condition can always be fulfilled by set- 
ting H *  = u l  m ~ .  . . u ~  r~ for m 1 >7 2 . . . .  , m n ~ 2. It is evident that in this 
case the power series for ~ j  (u) exists, consequently all terms of the type shown above 
can be annihilated in H .  

It can easily be shown that a series for H *  in which the functions ~ j  (u) are obtained 
by the power series in positive powers of u can be given, for the case of n == 2 (the 
general ease can be dealt with in a similar manner), in the form 

n *  ~ OH* ~ OH* On" 0~Z* _ 
= j -~11[v.,fo dUl-l- ~ "~u2 L=o dU, -j- Ux'-g~Ul ],~,=o "at- u" "g'~u~ l=,=o - 
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O~H O2H OSH 
- -  I o}t Ou~21u,=o dut  - -  I ~s O-~ff~ iu~=o dUs - -  ul~s O~Ou~ lu,=o 0 sH I u@~, ~ I , , , - - -o 

(0} 1 = Ul@ 1 (Ul ,  0 ) ,  I]t} 2 = U2~ 2 (0 ,  U2) ) 

It is clear from the above expression that by virtue of the condition ~1¢ =/= 0 , the terms 
appearing in the binomials atul m Jr- but ~-1 u~ and culuz m-1 q- dus m are transformed 
simultaneously for each order. For this reason only one term can be annihilated in 
each binomial. In particular, setting consecutively 0} 1 = ua ra and ~o s = us ra, we 
amve  at the expression (1.2). 

~. A i c h ~ m ~  for prov ing  the f o i m u l l ,  ( 1 , $ )  &rid ( 1 . 4 ) .  Letus 
denote by L the displacement operator along the trajectories written in the variables 
u x, us, 0 and a ,  and by X the operator of transformation of the following HamiRon- 

ian system : 

L = OH 0 Ott 0 OH 0 
O0 Ou.,. Ou2 O0 q- Out O:t 

o__  X * = ~  a 0 a q_~_a;j(a) a a j _ -  

0 x + (a) 
J 

Transforming the equations obtained from the condition of invariance of [L, X*]  = 0, 
we obtain ~1 = ~t (Ult H ) , H *  = - -  X H  Jr- [ (Ul, H)  and 

O~t OH a~z O~ O~ 
o~t ou, -q- ~ + Tff + ~ = ¢ (u~, H) (3.1) 

where ~1, f and @p are arbitrary functions of utand H ,  and H *  is determined exact- 
ly as in (2.2). Further manipulations yield 

= -~-t 
. l O l l  # art (3.2) 

Here %° and ~ are arbitrary functions independent of ~z. From (3, 2) follows (1, 3), 
Substituting the expressions (3.2) into the equation of motion containing OH* I Ou 1 
yields the forrnula (1.4) in which ~ *  : ~ - -  a / / O H .  The functions ~p°and ~° ate 
given by (1.4),while ~2 and ~ by (3.2). After this the function [*  ~_ I t  + ¢z ( 0 / /  
OH - - ~ ) ]  OH/Ou 1 can be found from (3.1) in the form of a formal series in o~.Fin- 
ally, we obtain 

0/I # OH 
l = - - ,  ~ o _  ~, + 

o0 ~ = 0.--3. 

4.  N o t e .  The questions of convergence were not considered here. The general 
problem of convergence was studied in [3]. The analyticity of the normalizing tram- 
formation for the second order systems which are Hamiltonian in the linear approxima- 
tion, was proved by the author ( *) .  (A complete proof of this obtained by the author 

") Matkhashov, L. M. ,  On the analyCe equivalence of the systems of o ~ "  ary d i f f e r e n t .  
equations with resonances. Preprint ~36  of the Inst. of the Problems of Mechanics, art . 
Nauk SSSR, Moscow, 19q4. 



does not, in fact, contain any of the omissions noted in the text of [4]). The presence 
of a finite number of formal invariants of the second order non-Hamiltonian systems 
with resonances was established earlier [5]. The same aspect was studied for the multi-  
dimensional systems by the author in [6] and (simultaneously and independently) in [7]. 
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For differential systems of neutral type we examine one of the formulations of 
the finite-time interval stability problem, i.e., technical stability. By the 
Lia[mnov-Krasovskii method [1-- 3] we obtain sufficient conditions for techni- 
cal stability and for the so-called contracting technical stability. Similar in- 
vestigatiom for ordinary differential equations were carried out in [4] and for 
equations with a lagging argument, in [5, 6]. 

1. We am given a system of differential equations 

d D (x t (0), t) = / (xt (0), t) ,  D (xt (0), t) -= x (t) - -  g (xt (0), t) (1. 1) 
dt 

0 

g (x (0), t) ~ I [d0~ (0, t)] x (0) 
__-g  

Here the vector function xt(O) ~-  x (t 4- O} belongs forail  t ~ 0 to the s p a c e C o ~  
C ( [ - - x ,  0 ] , R  n) with the norm I I x ( 0 ) ~  = s u p ( [ x l ( 0 )  J for - - T ~ 0  ~ 0 ,  
i = t ,  2 , . . . ,  n); ~ ( 0 ,  t ) i s  a n ( n  × n)-matrix of functions continuous in t ~  
[0, co) and of bounded variation in 0, for which a continuous function l 0 (s), nonde- 


